China Custom 10c Universal Joint for CZPT

Product Description

Spicer  P (mm) R (mm) Caterpillar Precision  Rockwell  GKN Alloy Neapcon Serie  Bearing type
5-2002X 33.34 79 644683 951 CP2002 HS520   1-2171 2C 4LWT
5-2117X 33.34 79 316117 994   HS521   1-2186 2C 4LWD
5-2116X 33.34 79 6S6902 952 CP2116   1063   2C 2LWT,2LWD
5-3000X 36.5 90.4 5D9153 536   HS530 1711 3-3152 3C 4LWT
5-3014X 36.5 90.4 9K1976 535   HS532     3C 2LWT,2LWD
5-4143X 36.5 108 6K 0571 969   HS545 1689 3-4143 4C 4HWD
5-4002X 36.5 108 6F7160 540 CP4002 HS540 1703 3-4138 4C 4LWT
5-4123X 36.5 108 9K3969 541 CP4101 HS542 1704 3-4123 4C 2LWT,2LWD
5-4140X 36.5 108 5M800 929 CP4130 HS543   3-4140 4C 2LWT,2HWD
5-1405X 36.5 108   549     1708   4C 4LWD
5-4141X 36.5 108 7M2695 996         4C 2LWD,2HWD
5-5177X 42.88 115.06 2K3631 968 CP5177 HS555 1728 4-5177 5C 4HWD
5-5000X 42.88 115.06 7J5251 550 CP5122 HS550 1720 4-5122 5C 4LWT
5-5121X 42.88 115.06 7J5245 552 CP5101 HS552 1721 4-5127 5C 2LWT,2LWD
5-5173X 42.88 115.06   933   HS553 1722 4-5173 5C 2LWT,2HWD
5-5000X 42.88 115.06   999         5C 4HWD
5-5139X 42.88 115.06             5C 2LWD,2HWD
5-6102X 42.88 140.46 643633 563 CP62N-13 HS563 1822 4-6114 6C 2LWT,2HWD
5-6000X 42.88 140.46 641152 560 CP62N-47 HS560 1820 4-6143 6C 4LWT
5-6106X 42.88 140.46 1S9670 905 CP62N-49 HS565 1826 4-6128 6C 4HWD
G5-6103X 42.88 140.46   564     1823 4-6103 6C 2LWT,2LWD
G5-6104X 42.88 140.46   566     1824 4-6104 6C 4LWD
G5-6149X 42.88 140.46             6C 2LWD,2HWD
5-7105X 49.2 148.38 6H2577 927 CP72N-31 HS575 1840 5-7126 7C 4HWD
5-7000X 49.2 148.32 8F7719 570 CP72N-32 HS570 1841 5-7205 7C 4LWT
5-7202X 49.2 148.38 7J5242 574 CP72N-33 HS573 1843 5-7207 7C 2LWT,2HWD
5-7203X 49.2 148.38   575 CP72N-55     5-7208 7C 4LWD
5-7206X 49.2 148.38   572 CP72N-34   1842 5-7206 7C 2LWT,2LWD
5-7204X 49.2 148.38   576 CP72N-57     5-7209 7C 2LWD,2HWD
5-8105X 49.2 206.32 6H2579 928 CP78WB-2 HS585 1850 6-8113 8C 4HWD
5-8200X 49.2 206.32   581 CP82N-28   1851 6-8205 8C 4LWT

Condition: New
Certification: ISO, Ts16949
Structure: Single
Material: 20cr
Type: Universal Joint
Transport Package: Box + Plywood Case
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

universal joint

Can universal joints be used in precision manufacturing equipment?

Yes, universal joints can be used in precision manufacturing equipment, depending on the specific requirements and applications. Here’s a detailed explanation:

Precision manufacturing equipment often requires precise and reliable motion transmission between different components or subsystems. Universal joints can be employed in such equipment to facilitate the transmission of rotational motion and torque while accommodating misalignment or angular variations. However, their usage in precision manufacturing equipment is subject to certain considerations:

  1. Motion Transmission: Universal joints are effective in transmitting rotational motion and torque across misaligned or non-collinear shafts. In precision manufacturing equipment, where precise and synchronized motion is crucial, universal joints can provide flexibility and compensate for slight misalignments or angular variations, ensuring reliable motion transfer.
  2. Angular Accuracy: Precision manufacturing often requires maintaining precise angular accuracy during operation. While universal joints can accommodate misalignments, they introduce certain angular errors due to their design. These errors may be acceptable or manageable depending on the specific application. However, in cases where extremely tight angular accuracy is required, alternative motion transmission mechanisms, such as precision couplings or direct drives, might be preferred.
  3. Backlash and Play: Universal joints can exhibit a certain degree of backlash or play, which may affect the precision of the manufacturing process. Backlash refers to the slight movement or play that occurs when reversing the direction of rotation. In precision manufacturing equipment, minimizing backlash is often critical. Careful selection of high-quality universal joints or incorporating additional mechanisms to reduce backlash, such as preloading or anti-backlash devices, might be necessary to achieve the desired precision.
  4. Load and Speed Considerations: When using universal joints in precision manufacturing equipment, it is essential to consider the expected loads and operating speeds. Universal joints have specific load and speed limitations, and exceeding these limits can lead to premature wear, reduced precision, or even failure. Careful selection of universal joints with appropriate load and speed ratings based on the application’s requirements is necessary to ensure optimal performance.
  5. Maintenance and Lubrication: Regular maintenance and proper lubrication are crucial for the reliable and precise operation of universal joints in precision manufacturing equipment. Following manufacturer guidelines regarding lubrication intervals, lubricant types, and maintenance procedures is essential. Regular inspection of the joints for wear, damage, or misalignment is also necessary to identify any issues that could affect precision.
  6. Application-Specific Considerations: Each precision manufacturing application may have unique requirements and constraints. Factors such as available space, environmental conditions, required precision levels, and integration with other components should be taken into account when determining the feasibility and suitability of using universal joints. Consulting with experts or manufacturers specializing in precision manufacturing equipment can help in evaluating the best motion transmission solution for a specific application.

In summary, universal joints can be used in precision manufacturing equipment to facilitate motion transmission while accommodating misalignment. However, their usage should be carefully evaluated considering factors such as angular accuracy requirements, backlash and play limitations, load and speed considerations, maintenance needs, and application-specific constraints.

universal joint

How do you address the effect of temperature variations on a universal joint?

Addressing the effect of temperature variations on a universal joint involves considering factors such as material selection, lubrication, and thermal expansion. Here’s a detailed explanation:

Temperature variations can have an impact on the performance and durability of universal joints. Extreme temperatures can affect the materials, lubrication, and dimensional stability of the joint components. To address these effects, the following measures can be taken:

  • Material Selection: Choosing materials with appropriate temperature resistance is crucial. The materials used in universal joints should have a suitable operating temperature range to withstand the expected temperature variations. For example, selecting heat-resistant alloys or materials with low thermal expansion coefficients can help mitigate the effects of temperature changes.
  • Lubrication: Proper lubrication is essential for reducing friction and wear in universal joints, especially under temperature variations. Lubricants with high-temperature stability and viscosity should be selected to ensure adequate lubrication at both low and high temperatures. It’s important to follow the manufacturer’s recommendations regarding lubrication intervals and the use of lubricants suitable for the operating temperature range.
  • Thermal Expansion Compensation: Universal joints can experience dimensional changes due to thermal expansion or contraction. These changes can affect the alignment and performance of the joint. To address this, measures such as incorporating design features that allow for thermal expansion compensation, using materials with low thermal expansion coefficients, or incorporating flexible elements can help minimize the impact of temperature variations on the joint’s operation.
  • Insulation: In situations where extreme temperatures are anticipated, providing insulation or heat shielding around the universal joint can help maintain more stable operating conditions. Insulation materials can help reduce the transfer of heat to or from the joint, minimizing the temperature variations experienced by the components.
  • Temperature Monitoring: Regular monitoring of the operating temperature of the universal joint can help identify any abnormal temperature variations that may indicate issues with lubrication, excessive friction, or other problems. Temperature sensors or thermal imaging techniques can be utilized for monitoring purposes.

It’s important to note that the specific measures taken to address temperature variations may depend on the application, the expected temperature range, and the manufacturer’s recommendations. Additionally, proper maintenance practices, including inspection, cleaning, and lubrication, are essential for ensuring the optimal performance and longevity of universal joints under temperature variations.

In summary, addressing the effect of temperature variations on a universal joint involves considering material selection, lubrication, thermal expansion compensation, insulation, and temperature monitoring. By implementing appropriate measures, the impact of temperature variations on the universal joint’s performance and durability can be minimized.

universal joint

How does a universal joint accommodate misalignment between shafts?

A universal joint, also known as a U-joint, is designed to accommodate misalignment between shafts and allow for the transmission of rotational motion. Let’s explore how a universal joint achieves this:

A universal joint consists of a cross-shaped or H-shaped yoke with bearings at the ends of each arm. The yoke connects the input and output shafts, which are not in line with each other. The design of the universal joint enables it to flex and articulate, allowing for the accommodation of misalignment and changes in angles between the shafts.

When misalignment occurs between the input and output shafts, the universal joint allows for angular displacement. As the input shaft rotates, it causes the yoke to rotate along with it. Due to the perpendicular arrangement of the yoke arms, the output shaft connected to the other arm of the yoke experiences rotary motion at an angle to the input shaft.

The flexibility and articulation of the universal joint come from the bearings at the ends of the yoke arms. These bearings allow for smooth rotation and minimize friction between the yoke and the shafts. They are often enclosed within a housing or cross-shaped cap to provide protection and retain lubrication.

As the input shaft rotates and the yoke moves, the bearings within the universal joint allow for the necessary movement and adjustment. They enable the yoke to accommodate misalignment and changes in angles between the input and output shafts. The bearings allow the yoke to rotate freely and continuously, ensuring that torque can be transmitted smoothly between the shafts despite any misalignment.

By allowing angular displacement and articulation, the universal joint compensates for misalignment and ensures that the rotation of the input shaft is effectively transmitted to the output shaft. This flexibility is particularly important in applications where shafts are not perfectly aligned, such as in automotive drivelines or industrial machinery.

However, it’s important to note that universal joints do have limitations. They introduce a small amount of backlash or play, which can affect precision and accuracy in some applications. Additionally, at extreme angles, the operating angles of the universal joint may become limited, potentially causing increased wear and reducing its lifespan.

In summary, a universal joint accommodates misalignment between shafts by allowing angular displacement and articulation. The bearings within the universal joint enable the yoke to move and adjust, ensuring smooth and continuous rotation between the input and output shafts while compensating for their misalignment.

China Custom 10c Universal Joint for CZPT  China Custom 10c Universal Joint for CZPT
editor by CX 2023-11-21